Ela a Lower Bound for the Second Largest Laplacian Eigenvalue of Weighted Graphs

نویسندگان

  • ABRAHAM BERMAN
  • MIRIAM FARBER
چکیده

, where deg(vi) is the sum of weights of all edges connected to vi. The signless Laplacian matrix Q(G) is defined by D(G) + A(G). We denote by 0 = λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G) the eigenvalues of L(G), and by μ1(G) ≤ μ2(G) ≤ · · · ≤ μn(G) the eigenvalues of Q(G). We order the degrees of the vertices of G as d1(G) ≤ d2(G) ≤ · · · ≤ dn(G). Various bounds for the Laplacian eigenvalues of unweighted graphs, in terms of their degrees, were studied in the past (e.g., [1]). Li and Pan [6] showed that for an unweighted connected graph G with n ≥ 3, λn−1(G) ≥ dn−1(G). It is interesting to ask whether there exists a similar bound for weighted graphs. We will show it by using the following lemma ([5, p. 178]).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A sharp upper bound on the largest Laplacian eigenvalue of weighted graphs

We consider weighted graphs, where the edge weights are positive definite matrices. The Laplacian of the graph is defined in the usual way. We obtain an upper bound on the largest eigenvalue of the Laplacian and characterize graphs for which the bound is attained. The classical bound of Anderson and Morley, for the largest eigenvalue of the Laplacian of an unweighted graph follows as a special ...

متن کامل

Ela Nested Graphs with Bounded Second Largest ( Signless Laplacian

Nested split and double nested graphs (commonly named nested graphs) are considered. General statements regarding the signless Laplacian spectra are proven, and the nested graphs whose second largest signless Laplacian eigenvalue is bounded by a fixed integral constant are studied. Some sufficient conditions are provided and a procedure for classifying such graphs in particular cases is provide...

متن کامل

On Cheeger-type inequalities for weighted graphs

We give several bounds on the second smallest eigenvalue of the weighted Laplacian matrix of a finite graph and on the second largest eigenvalue of its weighted adjacency matrix. We establish relations between the given Cheeger-type bounds here and the known bounds in the literature. We show that one of our bounds is the best Cheeger-type bound available.

متن کامل

The Weighted Spectrum of the Universal Cover and an Alon-boppana Result for the Normalized Laplacian

We provide a lower bound for the spectral radius of the universal cover of irregular graphs in the presence of symmetric edge weights. We use this bound to derive an Alon-Boppana type bound for the second eigenvalue of the normalized Laplacian.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011